Source code for movement.kinematics

"""Compute kinematic variables like velocity and acceleration."""

import itertools
from typing import Literal

import numpy as np
import xarray as xr
from scipy.spatial.distance import cdist

from movement.utils.logging import log_error, log_warning
from movement.utils.reports import report_nan_values
from movement.utils.vector import compute_norm
from movement.validators.arrays import validate_dims_coords


[docs] def compute_displacement(data: xr.DataArray) -> xr.DataArray: """Compute displacement array in cartesian coordinates. The displacement array is defined as the difference between the position array at time point ``t`` and the position array at time point ``t-1``. As a result, for a given individual and keypoint, the displacement vector at time point ``t``, is the vector pointing from the previous ``(t-1)`` to the current ``(t)`` position, in cartesian coordinates. Parameters ---------- data : xarray.DataArray The input data containing position information, with ``time`` and ``space`` (in Cartesian coordinates) as required dimensions. Returns ------- xarray.DataArray An xarray DataArray containing displacement vectors in cartesian coordinates. Notes ----- For the ``position`` array of a ``poses`` dataset, the ``displacement`` array will hold the displacement vectors for every keypoint and every individual. For the ``position`` array of a ``bboxes`` dataset, the ``displacement`` array will hold the displacement vectors for the centroid of every individual bounding box. For the ``shape`` array of a ``bboxes`` dataset, the ``displacement`` array will hold vectors with the change in width and height per bounding box, between consecutive time points. """ validate_dims_coords(data, {"time": [], "space": []}) result = data.diff(dim="time") result = result.reindex(data.coords, fill_value=0) return result
[docs] def compute_velocity(data: xr.DataArray) -> xr.DataArray: """Compute velocity array in cartesian coordinates. The velocity array is the first time-derivative of the position array. It is computed by applying the second-order accurate central differences method on the position array. Parameters ---------- data : xarray.DataArray The input data containing position information, with ``time`` and ``space`` (in Cartesian coordinates) as required dimensions. Returns ------- xarray.DataArray An xarray DataArray containing velocity vectors in cartesian coordinates. Notes ----- For the ``position`` array of a ``poses`` dataset, the ``velocity`` array will hold the velocity vectors for every keypoint and every individual. For the ``position`` array of a ``bboxes`` dataset, the ``velocity`` array will hold the velocity vectors for the centroid of every individual bounding box. See Also -------- compute_time_derivative : The underlying function used. """ # validate only presence of Cartesian space dimension # (presence of time dimension will be checked in compute_time_derivative) validate_dims_coords(data, {"space": []}) return compute_time_derivative(data, order=1)
[docs] def compute_acceleration(data: xr.DataArray) -> xr.DataArray: """Compute acceleration array in cartesian coordinates. The acceleration array is the second time-derivative of the position array. It is computed by applying the second-order accurate central differences method on the velocity array. Parameters ---------- data : xarray.DataArray The input data containing position information, with ``time`` and ``space`` (in Cartesian coordinates) as required dimensions. Returns ------- xarray.DataArray An xarray DataArray containing acceleration vectors in cartesian coordinates. Notes ----- For the ``position`` array of a ``poses`` dataset, the ``acceleration`` array will hold the acceleration vectors for every keypoint and every individual. For the ``position`` array of a ``bboxes`` dataset, the ``acceleration`` array will hold the acceleration vectors for the centroid of every individual bounding box. See Also -------- compute_time_derivative : The underlying function used. """ # validate only presence of Cartesian space dimension # (presence of time dimension will be checked in compute_time_derivative) validate_dims_coords(data, {"space": []}) return compute_time_derivative(data, order=2)
[docs] def compute_time_derivative(data: xr.DataArray, order: int) -> xr.DataArray: """Compute the time-derivative of an array using numerical differentiation. This function uses :meth:`xarray.DataArray.differentiate`, which differentiates the array with the second-order accurate central differences method. Parameters ---------- data : xarray.DataArray The input data containing ``time`` as a required dimension. order : int The order of the time-derivative. For an input containing position data, use 1 to compute velocity, and 2 to compute acceleration. Value must be a positive integer. Returns ------- xarray.DataArray An xarray DataArray containing the time-derivative of the input data. See Also -------- :meth:`xarray.DataArray.differentiate` : The underlying method used. """ if not isinstance(order, int): raise log_error( TypeError, f"Order must be an integer, but got {type(order)}." ) if order <= 0: raise log_error(ValueError, "Order must be a positive integer.") validate_dims_coords(data, {"time": []}) result = data for _ in range(order): result = result.differentiate("time") return result
[docs] def compute_speed(data: xr.DataArray) -> xr.DataArray: """Compute instantaneous speed at each time point. Speed is a scalar quantity computed as the Euclidean norm (magnitude) of the velocity vector at each time point. Parameters ---------- data : xarray.DataArray The input data containing position information, with ``time`` and ``space`` (in Cartesian coordinates) as required dimensions. Returns ------- xarray.DataArray An xarray DataArray containing the computed speed, with dimensions matching those of the input data, except ``space`` is removed. """ return compute_norm(compute_velocity(data))
[docs] def compute_forward_vector( data: xr.DataArray, left_keypoint: str, right_keypoint: str, camera_view: Literal["top_down", "bottom_up"] = "top_down", ): """Compute a 2D forward vector given two left-right symmetric keypoints. The forward vector is computed as a vector perpendicular to the line connecting two symmetrical keypoints on either side of the body (i.e., symmetrical relative to the mid-sagittal plane), and pointing forwards (in the rostral direction). A top-down or bottom-up view of the animal is assumed (see Notes). Parameters ---------- data : xarray.DataArray The input data representing position. This must contain the two symmetrical keypoints located on the left and right sides of the body, respectively. left_keypoint : str Name of the left keypoint, e.g., "left_ear" right_keypoint : str Name of the right keypoint, e.g., "right_ear" camera_view : Literal["top_down", "bottom_up"], optional The camera viewing angle, used to determine the upwards direction of the animal. Can be either ``"top_down"`` (where the upwards direction is [0, 0, -1]), or ``"bottom_up"`` (where the upwards direction is [0, 0, 1]). If left unspecified, the camera view is assumed to be ``"top_down"``. Returns ------- xarray.DataArray An xarray DataArray representing the forward vector, with dimensions matching the input data array, but without the ``keypoints`` dimension. Notes ----- To determine the forward direction of the animal, we need to specify (1) the right-to-left direction of the animal and (2) its upward direction. We determine the right-to-left direction via the input left and right keypoints. The upwards direction, in turn, can be determined by passing the ``camera_view`` argument with either ``"top_down"`` or ``"bottom_up"``. If the camera view is specified as being ``"top_down"``, or if no additional information is provided, we assume that the upwards direction matches that of the vector ``[0, 0, -1]``. If the camera view is ``"bottom_up"``, the upwards direction is assumed to be given by ``[0, 0, 1]``. For both cases, we assume that position values are expressed in the image coordinate system (where the positive X-axis is oriented to the right, the positive Y-axis faces downwards, and positive Z-axis faces away from the person viewing the screen). If one of the required pieces of information is missing for a frame (e.g., the left keypoint is not visible), then the computed head direction vector is set to NaN. """ # Validate input data _validate_type_data_array(data) validate_dims_coords( data, { "time": [], "keypoints": [left_keypoint, right_keypoint], "space": [], }, ) if len(data.space) != 2: raise log_error( ValueError, "Input data must have exactly 2 spatial dimensions, but " f"currently has {len(data.space)}.", ) # Validate input keypoints if left_keypoint == right_keypoint: raise log_error( ValueError, "The left and right keypoints may not be identical." ) # Define right-to-left vector right_to_left_vector = data.sel( keypoints=left_keypoint, drop=True ) - data.sel(keypoints=right_keypoint, drop=True) # Define upward vector # default: negative z direction in the image coordinate system upward_vector = ( np.array([0, 0, -1]) if camera_view == "top_down" else np.array([0, 0, 1]) ) upward_vector = xr.DataArray( np.tile(upward_vector.reshape(1, -1), [len(data.time), 1]), dims=["time", "space"], coords={ "space": ["x", "y", "z"], }, ) # Compute forward direction as the cross product # (right-to-left) cross (forward) = up forward_vector = xr.cross( right_to_left_vector, upward_vector, dim="space" ).drop_sel( space="z" ) # keep only the first 2 spatal dimensions of the result # Return unit vector return forward_vector / compute_norm(forward_vector)
[docs] def compute_head_direction_vector( data: xr.DataArray, left_keypoint: str, right_keypoint: str, camera_view: Literal["top_down", "bottom_up"] = "top_down", ): """Compute the 2D head direction vector given two keypoints on the head. This function is an alias for :func:`compute_forward_vector()\ <movement.kinematics.compute_forward_vector>`. For more detailed information on how the head direction vector is computed, please refer to the documentation for that function. Parameters ---------- data : xarray.DataArray The input data representing position. This must contain the two chosen keypoints corresponding to the left and right of the head. left_keypoint : str Name of the left keypoint, e.g., "left_ear" right_keypoint : str Name of the right keypoint, e.g., "right_ear" camera_view : Literal["top_down", "bottom_up"], optional The camera viewing angle, used to determine the upwards direction of the animal. Can be either ``"top_down"`` (where the upwards direction is [0, 0, -1]), or ``"bottom_up"`` (where the upwards direction is [0, 0, 1]). If left unspecified, the camera view is assumed to be ``"top_down"``. Returns ------- xarray.DataArray An xarray DataArray representing the head direction vector, with dimensions matching the input data array, but without the ``keypoints`` dimension. """ return compute_forward_vector( data, left_keypoint, right_keypoint, camera_view=camera_view )
def _cdist( a: xr.DataArray, b: xr.DataArray, dim: Literal["individuals", "keypoints"], metric: str | None = "euclidean", **kwargs, ) -> xr.DataArray: """Compute distances between two position arrays across a given dimension. This function is a wrapper around :func:`scipy.spatial.distance.cdist` and computes the pairwise distances between the two input position arrays across the dimension specified by ``dim``. The dimension can be either ``individuals`` or ``keypoints``. The distances are computed using the specified ``metric``. Parameters ---------- a : xarray.DataArray The first input data containing position information of a single individual or keypoint, with ``time``, ``space`` (in Cartesian coordinates), and ``individuals`` or ``keypoints`` (as specified by ``dim``) as required dimensions. b : xarray.DataArray The second input data containing position information of a single individual or keypoint, with ``time``, ``space`` (in Cartesian coordinates), and ``individuals`` or ``keypoints`` (as specified by ``dim``) as required dimensions. dim : str The dimension to compute the distances for. Must be either ``'individuals'`` or ``'keypoints'``. metric : str, optional The distance metric to use. Must be one of the options supported by :func:`scipy.spatial.distance.cdist`, e.g. ``'cityblock'``, ``'euclidean'``, etc. Defaults to ``'euclidean'``. **kwargs : dict Additional keyword arguments to pass to :func:`scipy.spatial.distance.cdist`. Returns ------- xarray.DataArray An xarray DataArray containing the computed distances between each pair of inputs. Examples -------- Compute the Euclidean distance (default) between ``ind1`` and ``ind2`` (i.e. interindividual distance for all keypoints) using the ``position`` data variable in the Dataset ``ds``: >>> pos1 = ds.position.sel(individuals="ind1") >>> pos2 = ds.position.sel(individuals="ind2") >>> ind_dists = _cdist(pos1, pos2, dim="individuals") Compute the Euclidean distance (default) between ``key1`` and ``key2`` (i.e. interkeypoint distance for all individuals) using the ``position`` data variable in the Dataset ``ds``: >>> pos1 = ds.position.sel(keypoints="key1") >>> pos2 = ds.position.sel(keypoints="key2") >>> key_dists = _cdist(pos1, pos2, dim="keypoints") See Also -------- scipy.spatial.distance.cdist : The underlying function used. compute_pairwise_distances : Compute pairwise distances between ``individuals`` or ``keypoints`` """ # The dimension from which ``dim`` labels are obtained labels_dim = "individuals" if dim == "keypoints" else "keypoints" elem1 = getattr(a, dim).item() elem2 = getattr(b, dim).item() a = _validate_labels_dimension(a, labels_dim) b = _validate_labels_dimension(b, labels_dim) result = xr.apply_ufunc( cdist, a, b, kwargs={"metric": metric, **kwargs}, input_core_dims=[[labels_dim, "space"], [labels_dim, "space"]], output_core_dims=[[elem1, elem2]], vectorize=True, ) result = result.assign_coords( { elem1: getattr(a, labels_dim).values, elem2: getattr(a, labels_dim).values, } ) # Drop any squeezed coordinates return result.squeeze(drop=True)
[docs] def compute_pairwise_distances( data: xr.DataArray, dim: Literal["individuals", "keypoints"], pairs: dict[str, str | list[str]] | Literal["all"], metric: str | None = "euclidean", **kwargs, ) -> xr.DataArray | dict[str, xr.DataArray]: """Compute pairwise distances between ``individuals`` or ``keypoints``. This function computes the distances between pairs of ``individuals`` (i.e. interindividual distances) or pairs of ``keypoints`` (i.e. interkeypoint distances), as determined by ``dim``. The distances are computed for the given ``pairs`` using the specified ``metric``. Parameters ---------- data : xarray.DataArray The input data containing position information, with ``time``, ``space`` (in Cartesian coordinates), and ``individuals`` or ``keypoints`` (as specified by ``dim``) as required dimensions. dim : Literal["individuals", "keypoints"] The dimension to compute the distances for. Must be either ``'individuals'`` or ``'keypoints'``. pairs : dict[str, str | list[str]] or 'all' Specifies the pairs of elements (either individuals or keypoints) for which to compute distances, depending on the value of ``dim``. - If ``dim='individuals'``, ``pairs`` should be a dictionary where each key is an individual name, and each value is also an individual name or a list of such names to compute distances with. - If ``dim='keypoints'``, ``pairs`` should be a dictionary where each key is a keypoint name, and each value is also keypoint name or a list of such names to compute distances with. - Alternatively, use the special keyword ``'all'`` to compute distances for all possible pairs of individuals or keypoints (depending on ``dim``). metric : str, optional The distance metric to use. Must be one of the options supported by :func:`scipy.spatial.distance.cdist`, e.g. ``'cityblock'``, ``'euclidean'``, etc. Defaults to ``'euclidean'``. **kwargs : dict Additional keyword arguments to pass to :func:`scipy.spatial.distance.cdist`. Returns ------- xarray.DataArray or dict[str, xarray.DataArray] The computed pairwise distances. If a single pair is specified in ``pairs``, returns an :class:`xarray.DataArray`. If multiple pairs are specified, returns a dictionary where each key is a string representing the pair (e.g., ``'dist_ind1_ind2'`` or ``'dist_key1_key2'``) and each value is an :class:`xarray.DataArray` containing the computed distances for that pair. Raises ------ ValueError If ``dim`` is not one of ``'individuals'`` or ``'keypoints'``; if ``pairs`` is not a dictionary or ``'all'``; or if there are no pairs in ``data`` to compute distances for. Examples -------- Compute the Euclidean distance (default) between ``ind1`` and ``ind2`` (i.e. interindividual distance), for all possible pairs of keypoints. >>> position = xr.DataArray( ... np.arange(36).reshape(2, 3, 3, 2), ... coords={ ... "time": np.arange(2), ... "individuals": ["ind1", "ind2", "ind3"], ... "keypoints": ["key1", "key2", "key3"], ... "space": ["x", "y"], ... }, ... dims=["time", "individuals", "keypoints", "space"], ... ) >>> dist_ind1_ind2 = compute_pairwise_distances( ... position, "individuals", {"ind1": "ind2"} ... ) >>> dist_ind1_ind2 <xarray.DataArray (time: 2, ind1: 3, ind2: 3)> Size: 144B 8.485 11.31 14.14 5.657 8.485 11.31 ... 5.657 8.485 11.31 2.828 5.657 8.485 Coordinates: * time (time) int64 16B 0 1 * ind1 (ind1) <U4 48B 'key1' 'key2' 'key3' * ind2 (ind2) <U4 48B 'key1' 'key2' 'key3' The resulting ``dist_ind1_ind2`` is a DataArray containing the computed distances between ``ind1`` and ``ind2`` for all keypoints at each time point. To obtain the distances between ``key1`` of ``ind1`` and ``key2`` of ``ind2``: >>> dist_ind1_ind2.sel(ind1="key1", ind2="key2") Compute the Euclidean distance (default) between ``key1`` and ``key2`` (i.e. interkeypoint distance), for all possible pairs of individuals. >>> dist_key1_key2 = compute_pairwise_distances( ... position, "keypoints", {"key1": "key2"} ... ) >>> dist_key1_key2 <xarray.DataArray (time: 2, key1: 3, key2: 3)> Size: 144B 2.828 11.31 19.8 5.657 2.828 11.31 14.14 ... 2.828 11.31 14.14 5.657 2.828 Coordinates: * time (time) int64 16B 0 1 * key1 (key1) <U4 48B 'ind1' 'ind2' 'ind3' * key2 (key2) <U4 48B 'ind1' 'ind2' 'ind3' The resulting ``dist_key1_key2`` is a DataArray containing the computed distances between ``key1`` and ``key2`` for all individuals at each time point. To obtain the distances between ``key1`` and ``key2`` within ``ind1``: >>> dist_key1_key2.sel(key1="ind1", key2="ind1") To obtain the distances between ``key1`` of ``ind1`` and ``key2`` of ``ind2``: >>> dist_key1_key2.sel(key1="ind1", key2="ind2") Compute the city block or Manhattan distance for multiple pairs of keypoints using ``position``: >>> key_dists = compute_pairwise_distances( ... position, ... "keypoints", ... {"key1": "key2", "key3": ["key1", "key2"]}, ... metric="cityblock", ... ) >>> key_dists.keys() dict_keys(['dist_key1_key2', 'dist_key3_key1', 'dist_key3_key2']) As multiple pairs of keypoints are specified, the resulting ``key_dists`` is a dictionary containing the DataArrays of computed distances for each pair of keypoints. Compute the city block or Manhattan distance for all possible pairs of individuals using ``position``: >>> ind_dists = compute_pairwise_distances( ... position, ... "individuals", ... "all", ... metric="cityblock", ... ) >>> ind_dists.keys() dict_keys(['dist_ind1_ind2', 'dist_ind1_ind3', 'dist_ind2_ind3']) See Also -------- scipy.spatial.distance.cdist : The underlying function used. """ if dim not in ["individuals", "keypoints"]: raise log_error( ValueError, "'dim' must be either 'individuals' or 'keypoints', " f"but got {dim}.", ) if isinstance(pairs, str) and pairs != "all": raise log_error( ValueError, f"'pairs' must be a dictionary or 'all', but got {pairs}.", ) validate_dims_coords(data, {"time": [], "space": ["x", "y"], dim: []}) # Find all possible pair combinations if 'all' is specified if pairs == "all": paired_elements = list( itertools.combinations(getattr(data, dim).values, 2) ) else: paired_elements = [ (elem1, elem2) for elem1, elem2_list in pairs.items() for elem2 in ( # Ensure elem2_list is a list [elem2_list] if isinstance(elem2_list, str) else elem2_list ) ] if not paired_elements: raise log_error( ValueError, "Could not find any pairs to compute distances for." ) pairwise_distances = { f"dist_{elem1}_{elem2}": _cdist( data.sel({dim: elem1}), data.sel({dim: elem2}), dim=dim, metric=metric, **kwargs, ) for elem1, elem2 in paired_elements } # Return DataArray if result only has one key if len(pairwise_distances) == 1: return next(iter(pairwise_distances.values())) return pairwise_distances
def _validate_labels_dimension(data: xr.DataArray, dim: str) -> xr.DataArray: """Validate the input data contains the ``dim`` for labelling dimensions. This function ensures the input data contains the ``dim`` used as labels (coordinates) when applying :func:`scipy.spatial.distance.cdist` to the input data, by adding a temporary dimension if necessary. Parameters ---------- data : xarray.DataArray The input data to validate. dim : str The dimension to validate. Returns ------- xarray.DataArray The input data with the labels dimension validated. """ if data.coords.get(dim) is None: data = data.assign_coords({dim: "temp_dim"}) if data.coords[dim].ndim == 0: data = data.expand_dims(dim).transpose("time", "space", dim) return data def _validate_type_data_array(data: xr.DataArray) -> None: """Validate the input data is an xarray DataArray. Parameters ---------- data : xarray.DataArray The input data to validate. Raises ------ ValueError If the input data is not an xarray DataArray. """ if not isinstance(data, xr.DataArray): raise log_error( TypeError, f"Input data must be an xarray.DataArray, but got {type(data)}.", )
[docs] def compute_path_length( data: xr.DataArray, start: float | None = None, stop: float | None = None, nan_policy: Literal["ffill", "scale"] = "ffill", nan_warn_threshold: float = 0.2, ) -> xr.DataArray: """Compute the length of a path travelled between two time points. The path length is defined as the sum of the norms (magnitudes) of the displacement vectors between two time points ``start`` and ``stop``, which should be provided in the time units of the data array. If not specified, the minimum and maximum time coordinates of the data array are used as start and stop times, respectively. Parameters ---------- data : xarray.DataArray The input data containing position information, with ``time`` and ``space`` (in Cartesian coordinates) as required dimensions. start : float, optional The start time of the path. If None (default), the minimum time coordinate in the data is used. stop : float, optional The end time of the path. If None (default), the maximum time coordinate in the data is used. nan_policy : Literal["ffill", "scale"], optional Policy to handle NaN (missing) values. Can be one of the ``"ffill"`` or ``"scale"``. Defaults to ``"ffill"`` (forward fill). See Notes for more details on the two policies. nan_warn_threshold : float, optional If more than this proportion of values are missing in any point track, a warning will be emitted. Defaults to 0.2 (20%). Returns ------- xarray.DataArray An xarray DataArray containing the computed path length, with dimensions matching those of the input data, except ``time`` and ``space`` are removed. Notes ----- Choosing ``nan_policy="ffill"`` will use :meth:`xarray.DataArray.ffill` to forward-fill missing segments (NaN values) across time. This equates to assuming that a track remains stationary for the duration of the missing segment and then instantaneously moves to the next valid position, following a straight line. This approach tends to underestimate the path length, and the error increases with the number of missing values. Choosing ``nan_policy="scale"`` will adjust the path length based on the the proportion of valid segments per point track. For example, if only 80% of segments are present, the path length will be computed based on these and the result will be divided by 0.8. This approach assumes that motion dynamics are similar across observed and missing time segments, which may not accurately reflect actual conditions. """ validate_dims_coords(data, {"time": [], "space": []}) data = data.sel(time=slice(start, stop)) # Check that the data is not empty or too short n_time = data.sizes["time"] if n_time < 2: raise log_error( ValueError, f"At least 2 time points are required to compute path length, " f"but {n_time} were found. Double-check the start and stop times.", ) _warn_about_nan_proportion(data, nan_warn_threshold) if nan_policy == "ffill": return compute_norm( compute_displacement(data.ffill(dim="time")).isel( time=slice(1, None) ) # skip first displacement (always 0) ).sum(dim="time", min_count=1) # return NaN if no valid segment elif nan_policy == "scale": return _compute_scaled_path_length(data) else: raise log_error( ValueError, f"Invalid value for nan_policy: {nan_policy}. " "Must be one of 'ffill' or 'scale'.", )
def _warn_about_nan_proportion( data: xr.DataArray, nan_warn_threshold: float ) -> None: """Print a warning if the proportion of NaN values exceeds a threshold. The NaN proportion is evaluated per point track, and a given point is considered NaN if any of its ``space`` coordinates are NaN. The warning specifically lists the point tracks that exceed the threshold. Parameters ---------- data : xarray.DataArray The input data array. nan_warn_threshold : float The threshold for the proportion of NaN values. Must be a number between 0 and 1. """ nan_warn_threshold = float(nan_warn_threshold) if not 0 <= nan_warn_threshold <= 1: raise log_error( ValueError, "nan_warn_threshold must be between 0 and 1.", ) n_nans = data.isnull().any(dim="space").sum(dim="time") data_to_warn_about = data.where( n_nans > data.sizes["time"] * nan_warn_threshold, drop=True ) if len(data_to_warn_about) > 0: log_warning( "The result may be unreliable for point tracks with many " "missing values. The following tracks have more than " f"{nan_warn_threshold * 100:.3} % NaN values:", ) print(report_nan_values(data_to_warn_about)) def _compute_scaled_path_length( data: xr.DataArray, ) -> xr.DataArray: """Compute scaled path length based on proportion of valid segments. Path length is first computed based on valid segments (non-NaN values on both ends of the segment) and then scaled based on the proportion of valid segments per point track - i.e. the result is divided by the proportion of valid segments. Parameters ---------- data : xarray.DataArray The input data containing position information, with ``time`` and ``space`` (in Cartesian coordinates) as required dimensions. Returns ------- xarray.DataArray An xarray DataArray containing the computed path length, with dimensions matching those of the input data, except ``time`` and ``space`` are removed. """ # Skip first displacement segment (always 0) to not mess up the scaling displacement = compute_displacement(data).isel(time=slice(1, None)) # count number of valid displacement segments per point track valid_segments = (~displacement.isnull()).all(dim="space").sum(dim="time") # compute proportion of valid segments per point track valid_proportion = valid_segments / (data.sizes["time"] - 1) # return scaled path length return compute_norm(displacement).sum(dim="time") / valid_proportion