Source code for movement.napari.convert

"""Conversion functions from ``movement`` datasets to napari layers."""

import numpy as np
import pandas as pd
import xarray as xr


def _construct_properties_dataframe(ds: xr.Dataset) -> pd.DataFrame:
    """Construct a properties DataFrame from a ``movement`` dataset."""
    data = {
        "individual": ds.coords["individuals"].values,
        "time": ds.coords["time"].values,
        "confidence": ds["confidence"].values.flatten(),
    }
    desired_order = list(data.keys())
    if "keypoints" in ds.coords:
        data["keypoint"] = ds.coords["keypoints"].values
        desired_order.insert(1, "keypoint")

    # sort
    return pd.DataFrame(data).reindex(columns=desired_order)


def _construct_track_and_time_cols(
    ds: xr.Dataset,
) -> tuple[np.ndarray, np.ndarray]:
    """Compute napari track_id and time columns from a ``movement`` dataset."""
    n_frames = ds.sizes["time"]
    n_individuals = ds.sizes["individuals"]
    n_keypoints = ds.sizes.get("keypoints", 1)
    n_tracks = n_individuals * n_keypoints

    # Each keypoint of each individual is a separate track
    track_id_col = np.repeat(np.arange(n_tracks), n_frames).reshape(-1, 1)
    time_col = np.tile(np.arange(n_frames), (n_tracks)).reshape(-1, 1)

    return track_id_col, time_col


[docs] def ds_to_napari_layers( ds: xr.Dataset, ) -> tuple[np.ndarray, np.ndarray | None, pd.DataFrame]: """Convert ``movement`` dataset to napari Tracks array and properties. Parameters ---------- ds : xr.Dataset ``movement`` dataset containing pose or bounding box tracks, confidence scores, and associated metadata. Returns ------- points_as_napari : np.ndarray position data as a napari Tracks array with shape (N, 4), where N is n_keypoints * n_individuals * n_frames and the 4 columns are (track_id, frame_idx, y, x). bboxes_as_napari : np.ndarray | None bounding box data as a napari Shapes array with shape (N, 4, 4), where N is n_individuals * n_frames and each (4, 4) entry is a matrix of 4 rows (1 per corner vertex, starting from upper left and progressing in counterclockwise order) with the columns (track_id, frame, y, x). Returns None when the input dataset doesn't have a "shape" variable. properties : pd.DataFrame DataFrame with properties (individual, keypoint, time, confidence) for use with napari layers. Notes ----- A corresponding napari Points array can be derived from the Tracks array by taking its last 3 columns: (frame_idx, y, x). See the documentation on the napari Tracks [1]_ and Points [2]_ layers. References ---------- .. [1] https://napari.org/stable/howtos/layers/tracks.html .. [2] https://napari.org/stable/howtos/layers/points.html """ # Construct the track_ID and time columns for the napari Tracks array track_id_col, time_col = _construct_track_and_time_cols(ds) # Reorder axes to (individuals, keypoints, frames, xy) axes_reordering: tuple[int, ...] = (2, 0, 1) if "keypoints" in ds.coords: axes_reordering = (3,) + axes_reordering yx_cols = np.transpose( ds.position.values, # from: frames, xy, keypoints, individuals axes_reordering, # to: individuals, keypoints, frames, xy ).reshape(-1, 2)[:, [1, 0]] # swap x and y columns points_as_napari = np.hstack((track_id_col, time_col, yx_cols)) bboxes_as_napari = None # Construct the napari Shapes array if the input dataset is a # bounding boxes one if ds.ds_type == "bboxes": # Compute bbox corners xmin_ymin = ds.position - (ds.shape / 2) xmax_ymax = ds.position + (ds.shape / 2) # initialise xmax, ymin corner as xmin, ymin xmax_ymin = xmin_ymin.copy() # overwrite its x coordinate to xmax xmax_ymin.loc[{"space": "x"}] = xmax_ymax.loc[{"space": "x"}] # initialise xmin, ymin corner as xmin, ymin xmin_ymax = xmin_ymin.copy() # overwrite its y coordinate to ymax xmin_ymax.loc[{"space": "y"}] = xmax_ymax.loc[{"space": "y"}] # Add track_id and time columns to each corner array corner_arrays_with_track_id_and_time = [ np.c_[ track_id_col, time_col, np.transpose(corner.values, axes_reordering).reshape(-1, 2), ] for corner in [xmin_ymin, xmin_ymax, xmax_ymax, xmax_ymin] ] # Concatenate corner arrays along columns corners_array = np.concatenate( corner_arrays_with_track_id_and_time, axis=1 ) # Reshape to napari expected format # goes through corners counterclockwise from xmin_ymin # in image coordinates corners_array = corners_array.reshape( -1, 4, 4 ) # last dimension: track_id, time, x, y bboxes_as_napari = corners_array[ :, :, [0, 1, 3, 2] ] # swap x and y columns # Construct the properties DataFrame # Stack individuals, time and keypoints (if present) dimensions # into a new single dimension named "tracks" dimensions_to_stack: tuple[str, ...] = ("individuals", "time") if "keypoints" in ds.coords: dimensions_to_stack += ("keypoints",) # add last ds_ = ds.stack(tracks=sorted(dimensions_to_stack)) properties = _construct_properties_dataframe(ds_) return points_as_napari, bboxes_as_napari, properties