Source code for movement.napari.layer_styles
"""Dataclasses containing layer styles for napari."""
from dataclasses import dataclass, field
import numpy as np
import pandas as pd
from napari.utils.colormaps import ensure_colormap
DEFAULT_COLORMAP = "turbo"
[docs]
@dataclass
class LayerStyle:
"""Base class for napari layer styles."""
name: str
properties: pd.DataFrame
visible: bool = True
blending: str = "translucent"
[docs]
def as_kwargs(self) -> dict:
"""Return the style properties as a dictionary of kwargs."""
return self.__dict__
[docs]
@dataclass
class PointsStyle(LayerStyle):
"""Style properties for a napari Points layer."""
symbol: str = "disc"
size: int = 10
border_width: int = 0
face_color: str | None = None
face_color_cycle: list[tuple] | None = None
face_colormap: str = DEFAULT_COLORMAP
text: dict = field(
default_factory=lambda: {
"visible": False,
"anchor": "lower_left",
# it actually displays the text in the lower
# _right_ corner of the marker
"translation": 5, # pixels
}
)
[docs]
def set_color_by(self, prop: str, cmap: str | None = None) -> None:
"""Color markers and text by a column in the properties DataFrame.
Parameters
----------
prop : str
The column name in the properties DataFrame to color by.
cmap : str, optional
The name of the colormap to use, otherwise use the face_colormap.
"""
# Set points and text to be colored by selected property
self.face_color = prop
if "color" in self.text:
self.text["color"].update({"feature": prop})
else:
self.text["color"] = {"feature": prop}
# Get color cycle
if cmap is None:
cmap = self.face_colormap
n_colors = len(self.properties[prop].unique())
color_cycle = _sample_colormap(n_colors, cmap)
# Set color cycle for points and text
self.face_color_cycle = color_cycle
self.text["color"].update({"colormap": color_cycle})
[docs]
def set_text_by(self, prop: str) -> None:
"""Set the text property for the points layer.
Parameters
----------
prop : str
The column name in the properties DataFrame to use for text.
"""
self.text["string"] = prop
def _sample_colormap(n: int, cmap_name: str) -> list[tuple]:
"""Sample n equally-spaced colors from a napari colormap.
This includes the endpoints of the colormap.
"""
cmap = ensure_colormap(cmap_name)
samples = np.linspace(0, len(cmap.colors) - 1, n).astype(int)
return [tuple(cmap.colors[i]) for i in samples]