Source code for movement.napari.layer_styles

"""Dataclasses containing layer styles for napari."""

from dataclasses import dataclass, field

import numpy as np
import pandas as pd
from napari.utils.colormaps import ensure_colormap

DEFAULT_COLORMAP = "turbo"


[docs] @dataclass class LayerStyle: """Base class for napari layer styles.""" name: str properties: pd.DataFrame visible: bool = True blending: str = "translucent"
[docs] def as_kwargs(self) -> dict: """Return the style properties as a dictionary of kwargs.""" return self.__dict__
[docs] @dataclass class PointsStyle(LayerStyle): """Style properties for a napari Points layer.""" symbol: str = "disc" size: int = 10 border_width: int = 0 face_color: str | None = None face_color_cycle: list[tuple] | None = None face_colormap: str = DEFAULT_COLORMAP text: dict = field( default_factory=lambda: { "visible": False, "anchor": "lower_left", # it actually displays the text in the lower # _right_ corner of the marker "translation": 5, # pixels } )
[docs] def set_color_by(self, prop: str, cmap: str | None = None) -> None: """Color markers and text by a column in the properties DataFrame. Parameters ---------- prop : str The column name in the properties DataFrame to color by. cmap : str, optional The name of the colormap to use, otherwise use the face_colormap. """ # Set points and text to be colored by selected property self.face_color = prop if "color" in self.text: self.text["color"].update({"feature": prop}) else: self.text["color"] = {"feature": prop} # Get color cycle if cmap is None: cmap = self.face_colormap n_colors = len(self.properties[prop].unique()) color_cycle = _sample_colormap(n_colors, cmap) # Set color cycle for points and text self.face_color_cycle = color_cycle self.text["color"].update({"colormap": color_cycle})
[docs] def set_text_by(self, prop: str) -> None: """Set the text property for the points layer. Parameters ---------- prop : str The column name in the properties DataFrame to use for text. """ self.text["string"] = prop
def _sample_colormap(n: int, cmap_name: str) -> list[tuple]: """Sample n equally-spaced colors from a napari colormap. This includes the endpoints of the colormap. """ cmap = ensure_colormap(cmap_name) samples = np.linspace(0, len(cmap.colors) - 1, n).astype(int) return [tuple(cmap.colors[i]) for i in samples]