ValidPosesDataset#
- class movement.validators.datasets.ValidPosesDataset(*, position_array, confidence_array=None, individual_names=None, keypoint_names=None, fps=None, source_software=None)[source]#
Bases:
object
Class for validating poses data intended for a
movement
dataset.The validator ensures that within the
movement poses
dataset:The required
position_array
is a numpy array with the last dimension containing 2 or 3 spatial coordinates.The optional
confidence_array
, if provided, is a numpy array with its shape matching the first three dimensions of theposition_array
; otherwise, it defaults to an array of NaNs.The optional
individual_names
andkeypoint_names
, if provided, match the number of individuals and keypoints in the dataset, respectively; otherwise, default names are assigned.The optional
fps
is a positive float; otherwise, it defaults to None.The optional
source_software
is a string; otherwise, it defaults to None.
- position_array#
Array of shape (n_frames, n_individuals, n_keypoints, n_space) containing the poses.
- Type:
np.ndarray
- confidence_array#
Array of shape (n_frames, n_individuals, n_keypoints) containing the point-wise confidence scores. If None (default), the scores will be set to an array of NaNs.
- Type:
np.ndarray, optional
- individual_names#
List of unique names for the individuals in the video. If None (default), the individuals will be named “individual_0”, “individual_1”, etc.
- Type:
list of str, optional
- keypoint_names#
List of unique names for the keypoints in the skeleton. If None (default), the keypoints will be named “keypoint_0”, “keypoint_1”, etc.
- Type:
list of str, optional
- fps#
Frames per second of the video. Defaults to None.
- Type:
float, optional
- source_software#
Name of the software from which the poses were loaded. Defaults to None.
- Type:
str, optional
- Raises:
ValueError – If the dataset does not meet the
movement poses
dataset requirements.